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INTRODUCTION 

Decision-making for exploration and development well placement and risk analysis using 

seismic reservoir characterization requires an increasing degree of assessment of the 

uncertainties associated with seismic Quantitative Interpretation (QI) predictions. Bayesian 

inference provides a framework where these issues can be addressed (Larsen et al 2006). 

However, in its standard formulation, and given the size of typical seismic volumes, Bayesian 

inference might be computationally prohibitive. In this paper we show how, under reasonable 

ABSTRACT  

In the application of seismic-based Quantitative Interpretation methods for characterizing 

unconventional tight reservoir formations, there is a need to improve and, in many cases, 

correct the standard AVO inversion estimates of key seismic petrophysical parameters (rock 

properties) that control hydro-frac stimulation. These parameters include the heterogeneity of 

rock quality (e.g. mineralogy, porosity, TOC, fluid saturation), natural fractures and in-situ 

stress.  

However, subsurface information obtained from standard AVO inversion is often highly 

ambiguous and nonunique since different lithologies and fluid configurations result in similar 

elastic responses. This non-uniqueness is an intrinsic characteristic of the inversion problem 

which can be mitigated by integrating relevant and non-redundant prior geological information 

into the inversion process. For example, standard inversion techniques are “unaware” of the 

lithological deposition, bed thickness distributions, anisotropic properties, and petrophysical 

relationships such as lithofacies, effective porosity, kerogen and fluid fill within the reservoir. 

In this paper we show how, under reasonable assumptions, a high-dimensional Bayesian 

inference problem enables the application of a general and flexible probabilistic framework for 

rigorous propagation of uncertainties. This is accomplished through using a prior facies model 

built using geological knowledge and rock physics measurements from multiple domains such 

as logs, core, petrophysics, depositional environment and associated vertical transverse 

isotropic layering effects; that can be easily integrated into a probabilistic inversion method 

termed VTI Direct Probabilistic Inversion. 
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assumptions, a high-dimensional Bayesian inference problem can be reduced to several local 

low-dimensional inference problems, reducing the computational cost of this solution. This 

enables the application of a general and flexible probabilistic framework for rigorous propagation 

of uncertainties where prior knowledge from multiple domains can be integrated within a Direct 

Probabilistic Inversion (DPI) method. 

Such prior information is readily available from logs, core and geological studies that provide a 

model for specific ranges of elastic properties for target zone facies, average thicknesses and 

their petrophysical variation, stratigraphic position within a formation, as well as the presence of 

gas, oil, or kerogen content. By defining a set of rules based on this information it is possible to 

dramatically reduce the solution space (Hansen et al 2018). However, in conventional 

deterministic seismic inversion algorithms all this prior information is difficult to integrate. 

Moreover, the correct propagation of uncertainties through these inversion methods is not 

possible. These additional prior constraints of thickness, ordering, etc. can also help resolve 

units that are below seismic resolution due to weak reflectivity contrasts.  

In particular, the case study will illustrate how DPI can leverage this extra information to 

significantly improve the resolution of near invisible low impedance contrast zones such as the 

Montney. Not only does this lead to a better interpretation of the low impedance contrast 

intervals but also helps mitigate the ambiguity in isolating the target reservoir properties, that are 

difficult or impossible to differentiate in deterministic inversion.  

We tested Anisotropic DPI in Canada on the Montney formation. The Montney formation is a 

large, active, resource play in North America, with a potential of up to 449 trillion cubic feet (Tcf) 

of natural gas (Mutual et al., 2024a). It is a thick formation, comprised of numerous silts and 

shales with varying reservoir properties. Extensive drilling activities and associated data 

collection within the Montney formation provide definition for the facies, depositional style, and 

rock properties of its major units (Mutual et al., 2024a). Thinly bedded shale units within the 

Montney can be described as having VTI (Vertically Transverse Isotropic, see Thomsen, 1986) 

anisotropy, and may overlay other tight silt, sand and shale units.   

The evidence we present for the value of the anisotropic extension to DPI begins with a high-

level theoretical description of the DPI process, followed by a simple theoretical VTI modeling 

exercise. This shows that a VTI effect can create a false positive in AVO inversion (Blangy, 

1994). Next, we discuss how VTI effects and other rock physics modeling fit into the DPI 

process. Finally, we demonstrate results on simple synthetic models, and subsequently on 

actual 3D seismic data with well control. 

THEORY 

Direct Probabilistic Inversion (DPI) workflow accounting for anisotropic VTI 
effects 

The general underlying DPI approach (Figure 1) consists of a one-step inversion process based 

on the Bayesian probabilistic formulation introduced by Jullum and Kolbjørnsen (2016), based 

on earlier work by Buland and More (2003). This method honours multi-domain inputs and 
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assumptions, ensuring the confidence range in these inputs. A key feature of DPI is that the 

geological framework of prior information can be encoded and combined with seismic AVO 

modeling to provide reliable results. This geological framework might include geological and 

petrophysical relationships such as encasing VTI shale facies, lithofacies with effective fracture 

porosity, kerogen and fluid-fill in non-equant porosity, elastic property ranges and intra property 

and distance correlations for each facies. The prior information including several elastic property 

relationship models can be broad and plausible but also very strict depending on the level of 

available knowledge. By incorporating spatial information, DPI optimizes the propagation of 

uncertainty and addresses the non-uniqueness of the problem by providing probability 

distributions. Under certain conditions, this reduction in the solutions space allows DPI to extract 

features beneath the seismic resolution limit. 

The result of the DPI process is a probability volume for each of the defined geological facies 

and anisotropic petrophysical parameters, including VTI layering, natural fractures and in-situ 

stress. Furthermore, many other properties can be derived from having the probability for each 

facies. For example, all the facies’ elastic parameter probabilities can be combined using the full 

AVO signal and the geological information into the most likely facies and corresponding 

probability. This will be discussed further in the next two subsections. Finally, by integrating all 

these probabilities, a volume of high-resolution sub-tuning intervals is produced. 

Figure 1: Schematic workflow for the Bayesian inference probabilistic QI DPI method (Adapted from Goodway et al., 

2021)  

DPI method 

Motivated by the above observations, the problem can be formulated as a Bayesian inference 

problem (Tarantola, 2005). 

                                           𝑠(𝒎) = 𝑐𝑟(𝒎)𝐿(𝒅𝑜𝑏𝑠 − 𝑔(𝒎))     (1) 
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where 𝒎 represents the subsurface model parameter configuration. In this context, information 

about 𝒎 is described by a probability density function (pdf). In the initial state of the inference, 

that is prior to the seismic data experiment the information is described by the prior pdf, r. This 

is updated with the information from the seismic AVO data via the likelihood function L, which 

measures, in terms of probability, the misfit between forward modelled 𝑔(𝒎) and the measured 

seismic AVO data, c is a normalizing constant, and the posterior pdf, s, constitutes the updated 

state of inference of our subsurface model parameters. Generally, the posterior pdf cannot be 

evaluated analytically, and hence one must resort to a sampling-based approximation. 

For the current problem, surfaces are defined as transitions from subsets of facies, and hence 

the model parameters, 𝑔(𝒎), constitute a seismic grid of categorical variables. The prior pdf will 

be defined by a set of rules for sampling from it, as this is much more general and flexible 

compared to specifying a closed form of it. The likelihood, 𝐿 contains, in addition to a seismic 

noise model, the combination of a statistical rock physics model from facies to elastic property 

domain, and a seismic convolutional AVO forward model from elastic properties to seismic 

angle-stack domain. As such, the solution to this problem can be considered a direct or one-

step inversion for facies using seismic AVO data. 

Markov Chain Monte Carlo (MCMC) sampling methods (Tarantola, 2005) can provide an 

ensemble of samples, which will converge to the posterior pdf no matter how complex the prior 

pdf and likelihood function are. However, efficiency is problem dependent and may be difficult to 

achieve. In addition, the required sampling density in a high-dimensional model space (such as 

a standard sized seismic volume) means that these methods in general are computationally 

demanding and time consuming.  

For limited compute power and time, several approximations can be made in the context of 

seismic AVO data and rock physics to make the inference problem computationally feasible. 

Surfaces of interfaces, defined as facies transitions, are (vertically) of short range or local by 

nature, and hence the point-wise marginal posterior or the joint posterior in a small volume are 

much more relevant compared to the long-range correlations of the joint posterior distribution. 

Additionally, at a given point in the seismic grid, the rock physics model response of a facies 

can be assumed localized to a small region at and around the point, and the associated seismic 

convolutional response is limited to a wavelet length above and below the point thus ignoring 

wave propagation effects outside convolutional modelling of primary reflections. If the prior 

information is also limited to short range correlations, the high-dimensional inference problem 

can be split into several low-dimensional problems, which can be approximately resolved by a 

weighted Monte Carlo method (for more details see Jullum and Kolbjørnsen, 2016). The 

conceptual outline is:  

1. Sample a large number N of local region sized facies realizations from the prior pdf. 

2. Set up the local likelihood approximate function for each facies sample. 

3. At a given point, 𝐩, in the seismic grid, extract the observed seismic AVO data, 𝒅𝑜𝑏𝑠 , 𝐩 in a 

local region with 𝐩 as center. 
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4. For each facies sample, the local likelihood function with 𝒅𝑜𝑏𝑠 , 𝐩 as input is evaluated and 

provides a weight, vp. 

5. Normalize the weights, vp, yielding normalized weights, wp. 

6. For each facies sample, identify the center value, fp and pair it with wp. 

Steps 3 to 6 are iterated through all the observed seismic data. At a given point in the seismic 

grid, the sum of the normalized weights for a given facies value approximates the marginal 

posterior distribution. The accuracy and the computational cost of the method depend on N and 

the size of the local region around the point, 𝐩. Using the estimated posterior marginal pdf and 

prior spatial information, if available, marginal posterior probabilities can readily be obtained. 

Anisotropic extension of DPI 

The preceding section describes the DPI inversion process, but the challenges presented by 

unconventional tight silt shale encased reservoirs often require the use of a more complex 

treatment to model anisotropic AVO responses, leading to extended VTI DPI.   

To implement an anisotropic extension to DPI, we use Ruger’s AVO approximation for VTI 

media (Rϋger 1997) as the forward modeling operator to compute the likelihood function in DPI. 

The benefits of this approach are two-fold. First, it expands the model space from three (AI, 

VP/VS, density) to five elastic parameters, which now includes the two weak anisotropy Thomsen 

parameters, δ and ε (Thomsen 1986). This expansion provides an opportunity for resolving 

elastic ambiguities that might not be resolved by using only three isotropic parameters. 

Secondly, the use of a more complex AVO approximation that accounts for anisotropic effects 

helps to avoid the misinterpretation of hydrocarbon-related AVO signatures, which might result 

from the false positive effect of overlaying anisotropic shales above water-saturated sands 

(Blangy, 1994). The same idea can be extended to unconventional reservoirs where the same 

incorrect signature can be misinterpreted as a false positive increase in brittleness if the 

anisotropy of the overlaying shale is not accounted for during the inversion process. 

The effect of an unaccounted VTI shale is illustrated by the model in Figures 2 through 4. Figure 

2a shows a simple Montney-like model with a VTI layered shale overlaying a tight gas shale. 

Figure 2b shows the velocity responses with angle within the VTI shale, which is dominated by 

the VP increase with angle. Figure 3 shows how the model of the observed VTI AVO response is 

incorrectly fitted by an isotropic AVO curve thereby compounding the overlying shale’s false 

positive effects with the estimate of the underlying tight gas elastic properties. As shown in the 

LambdaRho (𝜆𝜌) vs MuRho (𝜇𝜌) crossplot in Figure 4 (Goodway et al., 2006), this leads to an 

inaccurate brittleness estimate for VP/VSV with a near constant AI, a decreasing Poisson’s ratio, 

and an increasing Young’s modulus – results that arise from using standard deterministic 

isotropic AVO inversion. In Figure 4 the standard transform form P-impedance (AI) to Shear 

impedance (SI) is given as (Goodway, 2001) 

                                                  𝜆𝜌 = 𝐴𝐼2 − 2𝑆𝐼2, and     (2) 

                                                  𝜇𝜌 = 𝑆𝐼2                                           (3)  
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Figure 2: (a) Parameters used in model of VTI shale overlying tight gas shale reservoir. (b) VTI VP/VS increase (from 

VP and VSV) with angle of incidence in overlying shale layer. VTI VP/VS increase with angle in the overlying layer 

produces a relative VP/VS decrease for constant AI in the underlying layer of quartz-rich tight gas shale reservoir. 

 

a) 
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Figure 3: P-P reflectivity versus angle of incidence using VP/VS Rho input from Aki-Richard’s approximation, VTI 

Ruger AVO and Thomsen VTI shale VP/VS. Observed VTI Ruger AVO curve fitted with an isotropic AVO curve 

showing the false positive effects of overlying shale VTI. 

Figure 4: Crossplot for Lambda versus Mu for well data with an overlay of lines of constant Young’s modulus 

(curved), Poisson’s ratio (radial), P-wave modulus (sloping) with Grigg-Barnett brittleness trend (dashed). The effects 

of overlying VTI shale imprint on deterministic AVO guarantees a false positive brittleness trend (Grigg, 2004) in the 

underlying tight gas shale reservoir target. Compare trends (black-red arrows and red dashed line) for “Brittle” and 

“False overlying Shale VTI imprint”. 



 
VOL. 48, NO. 1 • SPRING 2025 

 
 
 
 
 

 

 

52 

52 
Anisotropic Direct Probabilistic Inversion for unconventional tight reservoirs 

Bill Goodway, Raul Cova, Evan Mutual, Adriana Gordon, Irina Berezina and Scott Leaney 

Statistical rock physics theory and facies modeling 

To prevent these VTI shale effects from becoming a source of error in the inversion, the effects  

must be included in the analysis. The need to include this complexity into the prior information 

used in the DPI method from Figure 1 extends to all other relevant lithologic, stress and fluid 

variables that are expected within the area. Only by doing so can the non-uniqueness of the 

AVO inversion be addressed. Standard inversion techniques, by contrast, are “unaware” of the 

lithological deposition, bed thickness distributions and petrophysical relationships such 

lithofacies, effective fracture porosity, kerogen and fluid fill in non-equant porosity within the 

zone of interest as shown schematically in the following Figures 5, 6, and 7. 

Figure 5: Complex hierarchy of unconventional rock physics classification for model-based relationships. (Adapted 

from Goodway et al., 2021) 

In Figure 7, the anisotropic LMR crossplot is plotted as 𝑐13(𝑐𝜆13)𝑎𝑛𝑑 𝑐44(𝑐𝜆44𝑤𝑒𝑎𝑘) components 

of the stiffness tensor. The coloured dots represent the elastic parameters from log-based gas 

shale zone colour-coded by volume of TOC. The black dots are the samples that correspond to 

a narrow range of quartz content (47.5 – 52.5%). The blue line joining the dots is the intrinsic 

VTI anisotropic trend line for this specific mineral quantity-each white dot represents a 10% 

increase in TOC. The blue line with square dots accounts for the presence of cracks and helps 

explain the scatter seen in the crossplot. 
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Figure 6: Lambda-Rho versus Mu-Rho crossplot of elastic property models of rock physics that provide prior 

information templates describing mineralogy, fluid, pore shape and kerogen. (Adapted from Figures 2 and 3 from 

Perez, 2013)  
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The additional information required for effective DPI is readily available from sonic scanner logs, 

core data and geological studies. These sources provide a model for specific ranges of elastic 

properties for target zone facies, average thickness and their petrophysical variation, 

stratigraphic position within a formation, as well as the presence of gas, oil, or kerogen content. 

This high-level prior information for DPI is carried in facies index logs for multiple wells. 

However, we usually face a problem in facies identification and analysis for index logs. When 

we use the term facies, we do not necessarily mean grouping of rocks only by lithology type, but 

also by some other property like porosity, or a set of properties like porosity and fluid type. The 

choice of facies is problem dependent.  For facies in unconventional formations, we may also 

consider defining facies by differences in pore space geometry like round pores and fractures or 

facies characterized by overpressure thus having different elastic responses (see Figures 5, 6 

and 7). Ideally the defined facies should be both geologically and statistically significant so that 

we have reliable statistics. Generally, classification methods are applied to group the target 

rocks in facies based on the measured data and vary from simple petrophysical cut-offs to 

clustering, such as K-nearest neighbors or K-means, to more advanced algorithms such as 

pattern recognition and algorithms using neural networks and classification trees. 

Given the facies index logs, a facies Markov transition probability matrix is generated, and 

together with a thickness distribution function, a geological sequence realization may be 

produced.  Usually a facies interpretation is provided, which may come from borehole image log 

interpretation and / or petrophysical cut-offs.  If a facies interpretation is not available, we can 

generate one automatically using any one of a myriad of ML techniques.  As an example, in 

Figure 8 we show a robust k-means algorithm with Monte Carlo initialization applied to Montney 

elastic logs including a sonic-derived VTI log. Prior to clustering, all logs were normalized to 

have a median value of 1. 

When available the facies index logs are defined by elastic anisotropic (VTI) properties: VP, VS, 

ρ, δ and ε.  These logs come from sonic and density logs, database information and rock 

physics. Sonic-scale anisotropy is utilized, being obtained from advanced sonic waveform 

processing. In a single well these data provide only three VTI moduli (C33, C55, C66); the two 

missing moduli (C11 and C13) are obtained by incorporating core database information and 

rock physics using a Bayesian framework.  

Ideally, sonic-scale anisotropy information would be derived from a multi-well / multi-angle 

inversion of sonic slowness measurements acquired through the same formation.  This 

approach can provide log-scale, complete tilted transversely isotropic (TTI) tensors but such 

data are rarely available in practice, so other approaches are needed.  A limited transversely 

isotropic (TI) tensor can be measured from sonic logs in a single well.  If the well is deviated, 

crossed-dipole shear logs can be oriented to obtain shear logs corresponding to qSv and Sh 

(normal and parallel to bedding, respectively).  The Stoneley mode can also be processed to 

obtain the Sh modulus (C66) and hence the shear VTI parameter, gamma.  The C66 estimate is 

generally reliable for low permeability formations but porous sandstone formations can cause 

negative shear VTI due to the impact of pore fluid mobility on the Stoneley wave.  It is not widely 

known that negative anisotropy in sandstones is expected due to stress sensitivity as in a  
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Figure 8: Automatic facies classification over the Montney using four (normalized) elastic logs (Ip, VP/VS, density, 

epsilon).  In this example ten facies have been classified. (Adapted from Leaney and Sayers, 2024)  

normal faulting regime vertical is the largest effective stress direction.  Thus, in addition to 

anisotropy in clay-rich formations, we incorporate recently developed rock physics modelling in 

the sonic tensor completion algorithm to include negative anisotropy in sandstone formations.  

This results in an increased contrast in δ and ε with respect to bounding shales.  Given VTI logs 

(Figure 9a), the facies index allows means and covariance matrix for density and anisotropic 

parameters to be computed for each facies.  These form part of the statistical parameter set for 

geological sequence realizations in the probabilistic AVA inversion.  Away from wells with sonic 

anisotropy measurements we can use petrophysical correlations.  Deviated wells with legacy 

sonic logs require angle-dependent corrections for anisotropic effects. Where advanced sonic 

processing is not available, rock physics modelling based on petrophysical properties (e.g. 

Vclay, PHIT) is used to predict anisotropy.  Isotropy is never the most likely scenario, so some 

prediction of anisotropy is always recommended given that the impact of VTI can be significant 

on the seismic AVA (amplitude versus angle) response. This is clearly illustrated in the synthetic 

angle gather comparison (generated from upscaled VTI logs) as seen to the bottom right of 

Figure 8b.  

Defining a set of prior rules based on facies information as in Figure 9a significantly reduces the 

solution space. In contrast, conventional deterministic seismic inversion algorithms struggle, or 

are often unable to integrate or incorporate this level of detailed information. Moreover, the 

traditional approaches do not allow for proper uncertainty propagation, limiting their ability to 

quantify confidence in the inversion results.  
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Figure 9: (a) VTI logs (Ip, VP/VS, density, epsilon and delta) coloured by facies over a section of the Montney. The 

facies form the anisotropic priors. (b) Comparison of VTI to isotropic (ISO) AVA synthetics generated from elastic VTI 

logs Ip, VP/VS, epsilon and delta, highlighted by the box over the base of a section of the Montney. (Adapted from 

Leaney and Sayers, 2024) 
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RESULTS 

Montney example VTI DPI proof-of-concept log synthetic model 

Demonstrating the anisotropic DPI method on the Montney Formation begins with a synthetic 

model, and analysis of the rock properties and facies, as shown in Figure 10. Figure 10a shows 

the facies model, elastic properties, Thomsen parameters (d, e) and synthetic seismic angle 

stacks to evaluate the DPI performance. This model was constructed based on a facies log 

derived from the interpretation of petrophysical and core data. Notice that the upper half of the 

model is dominated by the interlayering of dolomitic siltstones and dolosandstones, with the 

dolomitic siltstones showing larger thicknesses. The lower half of the model shows a series of 

argillaceous dolosiltstones interlayered with dolomitic siltstones. In contrast to the upper half the 

proportion/thicknesses of the dolomitic siltstones are smaller in the lower half. Figure 9b, depicts 

the distribution of the elastic properties for each facies in all the possible combinations of the 

five elastic parameters used in the probabilistic inversion. All the elastic properties values, 

including the anisotropy parameters, were measured or modelled by well logs. In the AI and 

VP/VS spaces all the facies seem to occupy similar regions. Only when the weak anisotropy 

parameters are considered, does a clear separation between the underburden facies and others 

become evident. Additionally, combining VP/VS and either δ or ε seems to provide a better 

separation of the dolosandstones and the argillaceous dolosiltstones. Notice that the dolomitic 

siltstone remains undifferentiated regardless of the analysis space.  

In Figure 10b, one can make a few observations. For example, the Ovb and Und facies are 

better separated using Thomsen’s parameters, the DLSS facies is discriminated by VP/VS and 

density from the ArgDLSilt, but it remains partially overlapping with the DLSilt in all domains, 

and the DLSilt and ArgDLSilt facies are partially overlapping in all domains. 

The final component needed for DPI is to encode the geological framework of prior information 

(see flow chart in Figure 1). As mentioned, this framework includes geological and petrophysical 

relationships such as encasing VTI shale facies, lithofacies with effective fracture porosity, 

kerogen and elastic property ranges with intra property and distance correlations for each 

facies. This prior information is mathematically encoded using the facies transition probabilities 

with the transition matrix as shown in Figure 10c. 

Similarly, in Figure 10c, the Ovb facies preferentially transition into the DLSilt facies, there is 

almost equal probability that the DLSilt facies transition into a DLSS or ArgDLSilt facies, the 

DLSS facies preferentially transition into the DLSilt facies, and the ArgDLSilt facies 

preferentially transition into the DLSilt facies. 
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Figure10: (a) 1D facies model, log tracks and 

forward synthetic gather from Montney well. (b) 

Crossplots of isotropic elastic parameters (AI, 

VP/VS, ρ) and weak anisotropic Thomsen 

parameters (δ or ε) from each facies. (c) Facies 

transition probability matrix. 

 

 

 

Montney example VTI DPI proof-of-concept log data model results 

Figures 11a, to 11c, illustrate the proof-of-concept results of isotropic and VTI probabilistic 

inversions for the preceding Montney log data example of Figure 10. Eight synthetic angle-

stacked traces between 5o and 36o, were computed using Ruger’s VTI approximation based on 

the available log data shown in the leftmost panels of each figure and same as the rightmost 

panel of Figure 9a.  

In all three figures, the middle panel (colour-coded by facies) is divided into sub-panels, namely: 

smooth prior facies model (far left) posterior full probability range output, most-probable facies, 

and finally the observed log facies. In the top right corner, each figure includes a confusion 

matrix, showing the predicted posterior facies (y-axis) vs the observed facies (x-axis), which 

enables an assessment of the accuracy of prediction accuracy. The bottom right panels show 

AI, VP/VS and ρ respectively and Thomsen d and e, in Figure 9b where the red tracks represent 

true log values, and the black overlays represent the mean posterior estimates. The gray 

bounds indicate two standard deviations.  

The prior probabilities for each facies in the leftmost middle panels for the dolomitic siltstone 

and the argillaceous dolosiltstones are the same with a value of 0.45. While the prior probability 

for the dolosandstones was fixed at 0.1. These probabilities approximate the proportion of each 

of those facies within the target window and are tapered down as they approach the expected 

location of the transition from the overburden to the Montney zone of interest and to the 

underburden.  

In this proof-of-concept test, Figure 11a shows the results of applying isotropic DPI to a VTI 

synthetic angle gather input (track 1). In the middle panel tracks 3 and 4, the posterior output 

and most probable facies do not accurately resolve the observed facies with a prediction 

accuracy of only 47%. This low accuracy is also captured visually in the confusion matrix of the 

predicted posterior output (y-axis) vs the observed facies (x-axis), having several high 

probabilities off the 1:1 diagonal. However, in the lower right tracks for AI, the black prediction 

overlay on the observed red log track shows a good match as the VTI effects only progressively  
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Figure 11: (a) Isotropic DPI with VTI synthetic gather input, with track 1 showing input synthetic gather traces, track 2 

showing prior model colour-coded by facies, track 3 depicting posterior full probability range output result, and track 4 

the most-probable facies panel and finally track 5 the observed log facies panel. The confusion matrix of the 

predicted posterior output (y-axis) vs the input observed facies (x-axis) for accuracy assessment is shown on the top 

right. To the bottom right are shown the log curves for AI, VP/VS and Rho elastic properties (red tracks) compared to 

output mean posterior elastic facies (black tracks) with grey tracks’ depicting the bounds of two standard deviations. 
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(b) An equivalent set of images similar to those shown in (a) for VTI-DPI with VTI synthetic gather input and lower 

right log tracks that include Thomsen parameters d and e in addition to AI, VP/VS and Rho. (c) An equivalent set of 

images similar to those shown in (b) but generated to illustrate the impact of adding random noise to the input VTI 

synthetic gather traces. The addition of noise reduces the average accuracy, indicated on the log segments, as well 

as the confusion matrix.  

affect the higher angle traces and not the zero angle traces as shown in the model AVO curves 

in Figure 3. By contrast the predicted VP/VS and ρ black overlay tracks do not match the red log 

tracks as these elastic properties are functions of the AVO gradient that are very sensitive to 

VTI effects.    

Figure 11b shows the results of applying VTI DPI to a VTI input model. The inversion output is 

presented as posterior facies probabilities (track 3). Compared to the prior probabilities, the 

posterior probabilities contain more detailed stratigraphic information. Notably, the resolution of 

the inversion results is higher and well below the tuning thickness expected from the frequency 

content of the seismic data (mean frequency 45 Hz). More importantly, the VTI inversion results 

reflect the correct facies’ proportions, i.e. an upper half dominated by dolomitic siltstones while 

the lower half is predominately made of argillaceous dolosiltstones with thicknesses increasing 

with depth. 

A comparison of the results in Figure 11b to the isotopic inversion results shown in Figure 11a 

demonstrates that the posterior output probability range and the most probable facies more 

accurately resolve the observed facies as seen clearly in track 4, with a prediction accuracy 

improvement of 79%. Furthermore, the confusion matrix of predicted vs observed facies 

probabilities are now more aligned on the central 1:1 diagonal that reflects the overall 79% 

average accuracy improvement. Lastly, the bottom right log track overlays of the predicted black 

tracks for VP/VS and Rho are strongly correlated to the observed red log tracks as are the new 

additional VTI Thomsen parameter estimates for δ and ε. 

Figure 11c shows the final example in this proof-of-concept VTI DPI test, demonstrating the 

impact of adding colored random noise to the input VTI synthetic gather traces to simulate more 

realistic seismic data. As expected, the addition of noise reduces the average prediction 

accuracy to 60% with a visible reduction in the confusion matrix, where the 1:1 diagonal 

indicating correct facies, prediction is noticeably less prominent. Further, the predicted posterior 

black track overlays for all elastic and VTI parameter estimates have a lower resolution with a 

poor smoother correlation with the observed red log tracks.  

 We can summarize some of the important observations from the above discussion as follows: 

▪ DPI solves the seismic AVO inversion problem using Bayesian inference, enabling flexible 

interpretation strategies: 

▪ Probabilistic facies classification is available for P10, P50, and P90 models. 

▪ DPI allows the integration of geological information such as layer thicknesses and 

stratigraphic ordering, during inversion. 

▪ DPI can resolve geological layers below tuning thickness. 
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▪ Dramatic improvements are observed in accuracy and resolution of inversion results. 

▪ DPI is capable of distinguishing between facies with similar properties.  

▪ VTI-DPI offers two additional elastic parameters (delta and epsilon) that improve facies 

classification results. 

▪ Applying isotropic models to data that exhibit VTI anisotropy can lead to incorrect 

estimates of VP/VS and density. 

▪ The presence of noise decreases the resolution of the VTI-DPI output. The magnitude of 

this effect is facies-dependent. 

Inversion results on 3D seismic data – Montney case study 

This section presents an example of integration, where information from standard processed 

seismic AVO data is integrated with information from a range of other domains from different 

domains such as well logs, seismic data and geology, as described above. This integrative 

approach demonstrates how QI for unconventional reservoir characterization can be 

significantly improved, particularly in the estimation of key rock physics (seismic petrophysics) 

parameters that influence hydraulic fracturing performance. These parameters include rock 

quality heterogeneity (e.g. mineralogical brittleness, porosity, kerogen-TOC), the presence of 

natural fractures and in-situ stress conditions.  

The case study examples show how information from standard processed seismic AVO data is 

integrated with information from a range of other domains such as well logs, seismic data and 

geology, as described above. Specifically, the two field examples from the Montney Formation 

are presented, showcasing the advantages of Direct Probabilistic Inversion (DPI) in 

characterizing tight unconventional siltstone reservoirs. In both cases, DPI integrates geologic 

priors (facies thickness, stratigraphic order, transition probabilities) and outputs facies 

probability volumes, enabling detection of thin beds and facies transitions those conventional 

deterministic inversions struggle to resolve. 

Montney Case 1 Low-resolution stratigraphic sequence 

In a deep Montney interval with poor seismic resolution, even the top of the Montney is 

challenging to identify on conventional seismic data and deterministic elastic volumes. Applying 

DPI in this setting yielded an explicit stratigraphic layering of the Montney, revealing internal 

units that were previously difficult to interpret. Figure 12 represents the facies defined for the 

DPI framework (Figure 12a), where the transition matrix (Figure 12b) illustrates the probabilities 

of one given facies transitioning into the next. The high probabilities are geologically reasonable 

and will drive the inverted solution.  

Figure 13 illustrates a comparison of the seismic stack (Figure 13a) and acoustic impedance 

results from the deterministic inversion (Figure 13b), and the DPI facies prior (Figure 13c) and 

posterior (Figure 13d) results for a Montney cross-section. with three well ties The DPI most-

likely facies display (Figure 13d) clearly delineates stratigraphic boundaries and lithofacies, 

notably identifying a thin, porous siltstone sub-unit (yellow) in the middle Montney that is  
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Figure12: (a) Facies definition,  and (b) transition matrix, for DPI framework. (Mutual et al., 2024) 

effectively invisible in the other volumes. This unit corresponds to the high porosity siltstone D4 

unit in Figure 12a. This sub-seismic reservoir layer is a known target zone for horizontal wells; 

DPI’s ability to resolve and map this zone provides a tangible benefit for geo-steering and well 

landing, as missing this layer by drilling out of zone can adversely affect well performance. The 

DPI result also deviated significantly from the initial model, which was built from sparse horizon 

picks, indicating that the inversion is not simply reproducing the prior but adding geological 

detail supported by the seismic. At two blind well locations, the DPI facies prediction showed a 

good match to observed facies logs, correctly identifying the placement and thickness of major 

porous siltstone beds (yellow facies) that the prior model had misrepresented. Moreover, DPI 

captured variations in overburden and intra-Montney unit thickness that were beyond seismic 

resolution and omitted in the prior, highlighting the value of the probabilistic approach in 

updating the stratigraphic model. This case demonstrates that by directly inverting for facies 

with a Bayesian framework, DPI can resolve thin beds and subtle facies changes below seismic 

tuning, providing a level of vertical resolution and stratigraphic clarity unattainable with 

deterministic methods. 

Montney Case 2 Facies probability and stress characterization 

The second case study integrates DPI into a broader quantitative interpretation workflow for the 

Montney Formation and is illustrated in Figure 14. Here, deterministic AVO inversion and rock 

physics inversion was first used to estimate elastic properties (AI, VP/VS, ρ) and rock properties 

(porosity, mineral fractions, etc.), which in turn fed a geomechanical model for minimum 

horizontal stress estimations. This deterministic approach provided an initial estimate of closure 

stress that aligned well with measured values, lending confidence to the seismic-derived  
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Figure 13: An arbitrary line passing through three wells and drawn from (a) seismic, (b) deterministic acoustic 

impedance, (c) DPI facies prior, and (d) DPI most likely facies. (Adapted from Mutual et al., 2024) 
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Figure 14: An arbitrary line 

passing through four wells 

and drawn from (a) acoustic 

impedance, (b) total 

porosity, (c) DPI porous 

siltstone, and (d) DPI most 

likely facies volumes. The 

DPI facies display exhibits 

much sharper stratigraphic 

detail and continuity which 

directly benefits reservoir 

characterization. (Adapted 

from Gordon et al., 2023) 
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predictions. DPI was then employed to directly invert the seismic for facies probabilities, using a 

prior model with these lithofacies:  

▪ High-porosity siltstone 

▪ Low-porosity (tight) siltstone 

▪ Organic-rich siltstone 

▪ Organic-rich dolomitic siltstone 

▪  Porous sand 

▪ Tight sand 

These facies span the Upper, Middle, and Lower Montney members, capturing the vertical 

heterogeneity of the formation. The DPI results dramatically improved facies discrimination 

across the Montney compared to a traditional deterministic classification (Figure 14). For 

instance, in the Upper Montney, DPI assigns a high probability to porous siltstone facies, 

consistent with slightly elevated porosities seen in the rock physics (Figure 14b) inversion and 

with the known sweet spots in that interval. This is a notable improvement over the deterministic 

inversion, which was already used successfully to identify landing zones.  

These results are confirmed by the 4 well penetrations. 

Across the section (Figure 14d), the Upper Montney is clearly characterized by a dominance of 

porous siltstone (yellow-orange) with interbedded tight siltstone, whereas the Middle and Lower 

Montney are dominated by organic-rich siltstone facies (gray tones) with minor porous streaks. 

The DPI facies volume exhibits much sharper stratigraphic detail and continuity than the prior 

model (or any deterministic inversion output), while still honoring the overall trends. This 

increased resolution and accuracy directly benefit reservoir characterization: for example, 

identifying the extent of organic-rich zones vs. more porous intervals can guide completion 

strategies and explain production differences across the Montney. By providing a range of 

probable facies rather than a single deterministic estimation, DPI also allows uncertainty 

analysis (e.g. generating P10/P50/P90 facies models for risk assessment), although this was 

outside the scope of the case studies. Overall, DPI delivered significantly more detail in the 

most-probable facies model compared to deterministic methods, even though it also struggled in 

the lower Montney likely due to poor quality seismic.  

Both case studies validate that incorporating DPI into Montney reservoir studies enhances the 

interpretation of thin stratigraphic units and heterogeneous lithologies. The results not only 

confirm known features (e.g. porous siltstone benches in the Upper Montney) but also reveal 

new sub-seismic facies architecture that can be critical for well planning and reservoir 

management.  

In summary, DPI’s integrated probabilistic approach provided a richer and more reliable 

characterization of the Montney Formation, improving facies prediction and supporting better-

informed decisions for both hydrocarbon development and reservoir stimulation in these tight 

siltstone plays. 
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CONCLUSIONS 

The direct probabilistic inversion (DPI) of both isotropic and anisotropic AVO data provides 

superior vertical resolution compared to a deterministic AVO inversion. This resolution 

advantage was observed in real 3D seismic testing. In synthetic tests, the incorporation of 

anisotropic effects enabled the inversion to correctly capture changes in the AVO gradient 

resulting from a change in VP/VS and/or shifts in the Thomsen VTI anisotropy parameters, δ and 

ε. This differentiation is not possible when using isotropic formulations in which the presence of 

anisotropy would result in an incorrect estimation of the gradient-related elastic parameters such 

as VP/VS, shear-impedance, density. 

Since DPI outputs are probability estimates for each facies at different depths, a more 

comprehensive statistical analysis can be performed. Although not demonstrated in this paper, 

P10, P50 and P90 models can be derived for a more in-depth interpretation and exploration risk 

analysis. 

Under reasonable assumptions, a high-dimensional Bayesian inference problem can be 

reduced to several local low-dimensional inference problems. This enables the application of a 

general and flexible probabilistic framework for rigorous propagation of uncertainties and for 

integrating prior knowledge from multiple domains. Moreover, this approach makes the 

Bayesian inversion a computationally affordable solution for large-scale industry AVO seismic 

datasets. The results of this study illustrate the ability of this method to provide probabilistic 

volumes of lithofacies (sand, shale variability, carbonate…), fractures and effective porosity, 

kerogen and fluids in non-equant porosity and horizontal stress anisotropy due to tectonic 

stresses for anisotropic elastic parameters that overprint isotropic estimates, at, and below, 

seismic tuning due to the utilization of statistical prior information. 
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