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Reversing is much harder..

* The inverse problem is non-unique

* By the time we reach the property
domain it can be highly non-unique

— Several petrophysically discrete facies
can have the same elastic properties

— Interbedded facies can have the same response as a
single package of their average properties

— Noise in the seismic data make the problem worse

— Accounting for the lack of seismic low frequencies §EG]9
bias the results — not always in the right way N ANTONIO, T
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Reversing is much harder..

* But it helps if you know what
you are looking for!

* Traditionally, we are using
— depth trends
— 3D spatial low frequency
volumes
« But there are additional
sources of information we
have not beenusing ..
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Probabilistic inversion challenges

The problem is analytically intractable
Numerical methods are exact in theory...
...but computationally expensive...

... and open questions about convergence, number of
statistical independent realizations etc.

Some model assumptions and/or approximations are
needed!

Need to work at scale — many terabytes of data across

multiple angle-stacks §EG]9
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The facies constellation
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The facies constellation

=5 « Combined with any information
u that:

— describes the probability distribution

. | of the facies thicknesses
- II — fit this information to a model that is
|- !“‘“L%L,'Z;?;m - broad yet plausible
 Allows you model the earth as a
e Y 2 Markov process that describes the
* transitions between facies as you
(( X )) move up or down a trace
e
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The statistical rock physics model
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For every (sub-facies) construct a
statistical rock physics model

— Capture the observed distributions of
elastic properties in each facies

— Include correlation lengths

— Include any observed elastic property
cross correlations

— Extend these distributions to ensure
that they are broad and yet plausible




Prior Likelihood
framework
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Extreme synthetics — elastic ambiguity

Two facies:

* identical mean elastic properties

* identical distributions for each property

« identical cross correlations between
properties

The only difference between them is the spatial
correlation length (dark varies faster then light)

Current methods would fail — 50:50 chance

In the no noise synthetic:

* equivalent or better results for facies variations
* inmean
* skew
« distribution

Algorithm matches numerically exact HM-MCMC
Algorithm outperforms HM by several OoM
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Extreme synthetics — thin beds
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Thin interbedded facies synthetic:

olive and green facies highly ambiguous
multiple stacked beds below tuning thickness
Gradually increase noise levels

Current methods would fail

beds too thin to be correctly classified
interbedded facies = mean package response
pointwise = characterization power degrades
rapidly with noise
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Perfect reconstruction in the no noise case
Elastic ambiguity challenged by noise
Thin bed performance is extremely robust

Algorithm matches numerically exact HM-MCMC
Algorithm outperforms HM by several OoM




Real data example

From well logs and stratigraphic column construct prior
framework

- spatially uninformed

« extremely broad...

« ...yet plausible

Expose some noisy land seismic to the prior framework
» Cooper basin — Australia

« seismic known to be challenging

* traditional inversion results poor
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Conclusions

 Direct Probabilistic Inversion allow for solving the seismic
AVO inverse problem as a Bayesian inference problem
— Arigorous quantitative propagation of uncertainties
— Flexible integration of information from diverse sources
— Allows to estimate key surfaces with uncertainty
— Possible to resolve below tuning thickness
— Possible to characterise facies that are extremely similar
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