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Inverse problem



• The inverse problem is non-unique
• By the time we reach the property 

domain it can be highly non-unique
– Several petrophysically discrete facies 

can have the same elastic properties
– Interbedded facies can have the same response as a 

single package of their average properties 
– Noise in the seismic data make the problem worse
– Accounting for the lack of seismic low frequencies 

bias the results – not always in the right way

Reversing is much harder..



• But it helps if you know what 
you are looking for!

• Traditionally, we are using
– depth trends
– 3D spatial low frequency 

volumes
• But there are additional 

sources of information we 
have not been using

Reversing is much harder..
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• The problem is analytically intractable
• Numerical methods are exact in theory…
• …but computationally expensive…
• … and open questions about convergence, number of 

statistical independent realizations etc. 

• Some model assumptions and/or approximations are 
needed!

• Need to work at scale – many terabytes of data across 
multiple angle-stacks

Probabilistic inversion challenges



• Any information that
– lists the facies expected to be 

present
– describes the probability of one 

facies appearing above another
– in this case a facies is any discrete 

unit
– each facies my have many sub-

facies with different mineralogies, 
saturations and/or porosities

– ensure that the facies constellation  
is broad yet plausible

The facies constellation



• Combined with any information 
that:
– describes the probability distribution 

of the facies thicknesses
– fit this information to a model that is 

broad yet plausible
• Allows you model the earth as a 

Markov process that describes the 
transitions between facies as you 
move up or down a trace

The facies constellation



• For every (sub-facies) construct a 
statistical rock physics model
– Capture the observed distributions of 

elastic properties in each facies
– Include correlation lengths
– Include any observed elastic property 

cross correlations
– Extend these distributions to ensure 

that they are broad and yet plausible

The statistical rock physics model

Elastic properties from well log data

Elastic properties RP realizations
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Extreme synthetics – elastic ambiguity

Two facies:
• identical mean elastic properties
• identical distributions for each property
• identical cross correlations between 

properties

The only difference between them is the spatial 
correlation length (dark varies faster then light)

Current methods would fail – 50:50 chance

In the no noise synthetic:
• equivalent or better results for facies variations

• in mean
• skew
• distribution

Algorithm matches numerically exact HM-MCMC
Algorithm outperforms HM by several OoM



Extreme synthetics – thin beds

Thin interbedded facies synthetic:
• olive and green facies highly ambiguous
• multiple stacked beds below tuning thickness
• Gradually increase noise levels

Current methods would fail
• beds too thin to be correctly classified
• interbedded facies ≡ mean package response
• pointwise ⇒ characterization power degrades 

rapidly with noise

Perfect reconstruction in the no noise case
Elastic ambiguity challenged by noise
Thin bed performance is extremely robust

Algorithm matches numerically exact HM-MCMC
Algorithm outperforms HM by several OoM



Real data example

From well logs and stratigraphic column construct prior 
framework
• spatially uninformed
• extremely broad…
• …yet plausible
Expose some noisy land seismic to the prior framework
• Cooper basin – Australia
• seismic known to be challenging
• traditional inversion results poor













• Direct Probabilistic Inversion allow for solving the seismic 
AVO inverse problem as a Bayesian inference problem
– A rigorous quantitative propagation of uncertainties
– Flexible integration of information from diverse sources
– Allows to estimate key surfaces with uncertainty
– Possible to resolve below tuning thickness
– Possible to characterise facies that are extremely similar

Conclusions




