Reservoir characterization in the presence of thin beds and elastically ambiguous facies

Rob Ross, Ask Jakobsen, Henrik Juhl Hansen

Qeye

Reversing is much harder..

- The inverse problem is non-unique
- By the time we reach the property domain it can be highly non-unique
 - Several petrophysically discrete facies can have the same elastic properties
 - Interbedded facies can have the same response as a single package of their average properties
 - Noise in the seismic data make the problem worse
 - Accounting for the lack of seismic low frequencies bias the results – not always in the right way

Reversing is much harder..

- But it helps if you know what you are looking for!
- Traditionally, we are using
 - depth trends
 - 3D spatial low frequency volumes
- But there are additional sources of information we have not been using

Probabilistic inversion challenges

- The problem is analytically intractable
- Numerical methods are exact in theory...
- ...but computationally expensive...
- ... and open questions about convergence, number of statistical independent realizations etc.
- Some model assumptions and/or approximations are needed!
- Need to work at scale many terabytes of data across multiple angle-stacks

The facies constellation

- Any information that
 - lists the facies expected to be present
 - describes the probability of one facies appearing above another
 - in this case a facies is any discrete unit
 - each facies my have many subfacies with different mineralogies, saturations and/or porosities
 - ensure that the facies constellation is broad yet plausible

The facies constellation

- Combined with any information that:
 - describes the probability distribution of the facies thicknesses
 - fit this information to a model that is broad yet plausible
- Allows you model the earth as a Markov process that describes the transitions between facies as you move up or down a trace

The statistical rock physics model

- For every (sub-facies) construct a statistical rock physics model
 - Capture the observed distributions of elastic properties in each facies
 - Include correlation lengths
 - Include any observed elastic property cross correlations
 - Extend these distributions to ensure that they are broad and yet plausible

Extreme synthetics – elastic ambiguity

Two facies:

- identical mean elastic properties
- identical distributions for each property
- identical cross correlations between properties

The only difference between them is the spatial correlation length (dark varies faster then light)

Current methods would fail - 50:50 chance

In the no noise synthetic:

- equivalent or better results for facies variations
 - in mean
 - skew
 - distribution

Algorithm matches numerically exact HM-MCMC Algorithm outperforms HM by several OoM

Extreme synthetics – thin beds

くくさくさ くくくくく とうさくと	
/ J < { / / / J < { / /	
ア ア < ア ア / / / / /) ()	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
5 5 5 5 5 1 5 5 5 5 5 1 () 5 6 (
122222 22222 11 (1)	
{ { { { { { { { { { { { { { { { { { {	
しをてきをくしたトレナトもくもらく	
1 1 2 2 2 2 1 1 2 2 2 2 2	
4444447777777777777	
{ } { } { } { } { } { } { } { } { } {	
~~~~~   ~~~~~   } / ] / [	
くちらくて   くくくくく   1 1 5 6 7	
\$ \$ \$ \$ \$ \$ 1 \$ \$ \$ \$ \$ \$ \$ \$ \$ 1 \$ 1	
> > > > >   > > > > > >   ( / / / / / / / / )	
222223   22222   1 1 1 1 5 5 5	
こここここ   こここここ   いいいいい	
المالي المحرج في	
>>>>>>   >>>>>>>>>>>>>>>>>>>>>>>>>>>>	
< < < < < < < < < < < < < < < < < < <	
2 2 2 2 2 1 2 2 2 2 2 2 2 1 4 1 4 1 4 1	
> < S > +   S ( S ( C   > < > + ) + )	



Thin interbedded facies synthetic:

- olive and green facies highly ambiguous
- multiple stacked beds below tuning thickness
- Gradually increase noise levels

Current methods would fail

- beds too thin to be correctly classified
- interbedded facies  $\equiv$  mean package response
- pointwise ⇒ characterization power degrades rapidly with noise

Perfect reconstruction in the no noise case Elastic ambiguity challenged by noise Thin bed performance is extremely robust

Algorithm matches numerically exact HM-MCMC Algorithm outperforms HM by several OoM



#### Real data example

From well logs and stratigraphic column construct prior framework

- spatially uninformed
- extremely broad...
- ...yet plausible

Expose some noisy land seismic to the prior framework

- Cooper basin Australia
- seismic known to be challenging
- traditional inversion results poor

























### Conclusions

- Direct Probabilistic Inversion allow for solving the seismic AVO inverse problem as a Bayesian inference problem
  - A rigorous quantitative propagation of uncertainties
  - Flexible integration of information from diverse sources
  - Allows to estimate key surfaces with uncertainty
  - Possible to resolve below tuning thickness
  - Possible to characterise facies that are extremely similar





UNIVERSITY OF COPENHAGEN





#### Innovation Fund Denmark

