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Introduction 
 
Within the discipline of seismic reservoir characterisation, there is an ever-present ambition to 
improve the accuracy and detail in the analysis of the seismic data. At the same time, reservoir related 
decision-making and risk analysis also requires an increasingly degree of assessment of the 
uncertainties associated with any interpretations and statements based on the seismic data. 
  
This process is constantly evolving and is quite often an integration process, where data and 
information at different scales from different domains are integrated to deliver an improved level of 
information of the reservoir and the subsurface. As the data comes with different levels of certainty, 
and as the models of the governing physics between the domains are only approximate, this 
integration process becomes relatively complex. The integration may be performed by a team of 
experts using qualitative criteria, yet it, or at least a part of it, may also be formulated as an inverse 
problem, see for instance [Bosch et al. 2010] for an overview. 
 
The following will present an integration example, where information from standard processed 
seismic amplitude versus offset (AVO) data are integrated with information from a range of other 
domains. The approach will here be applied to the well-known exercise of interpreting surfaces from 
seismic data of key geologic and reservoir interfaces, which can be challenging at and below seismic 
resolution limits. So rather than interpreting surfaces of key reservoir interfaces, they will be 
estimated as a result of integration of data and information from different domains such as well logs, 
seismic data and geology. 
 
Method 
 
Motivated by the above observations, the problem can be formulated as a Bayesian inference 
problem, see for instance  [Tarantola 2005]. 
 
                                                      𝜎(𝒎)  = 𝑐 𝜌(𝒎)𝐿(𝒅𝒐𝒃𝒔 − 𝒈(𝒎))                                      Eq 1 
 
Where m represents the subsurface model parameter configuration. In this context, information about 
m is described by a probability density function (pdf). In the initial state of the inference, that is prior 
to the seismic data experiment the information is described by the prior pdf, 𝜌. This is updated with 
the information from the seismic AVO data via the likelihood function L, which measures, in terms of 
probability, the misfit between forward modelled g(m) and measured seismic AVO data, dobs. c is a 
normalising constant, and the posterior pdf, 𝜎, constitutes the updated state of inference of our 
subsurface model parameters. Generally, the posterior pdf cannot be evaluated analytically, and hence 
one must resort to a sampling based approximation. 
 
For the current problem, surfaces are defined as transitions from subsets of facies, and hence the 
model parameters, m, constitute a seismic grid of categorical variables.  The prior pdf will be defined 
by a set of rules for sampling from it, as this is much more general and flexible compared to 
specifying a closed form of it. The likelihood, L, contains, in addition to a seismic noise model, the 
combination of a statistical rock physics model from facies to elastic property domain, and a seismic 
convolutional AVO forward model from elastic properties to the seismic angle-stack domain. As 
such, the solution to this problem can be considered a direct or one-step inversion for facies using 
seismic AVO data.  
 
Markov chain Monte Carlo sampling methods [Tarantola 2005] can be demonstrated to provide an 
ensemble of samples, which will converge on the posterior pdf no matter how complex the prior pdf 
and likelihood function are. However, efficiency is very problem dependent and may be difficult to 
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achieve. In addition, required sampling density in a high dimensional model space (such as a standard 
sized seismic volume) means that these methods in general are computationally demanding and time 
consuming. 
 
Short of compute power and time, a number of approximations can be made in the context of seismic 
AVO data and rock physics in order to make the inference problem computationally feasible. Surfaces 
of interfaces, defined as facies transitions, are (vertically) of short range or local by nature, and hence 
the point-wise marginal posterior or the joint posterior in a small volume are much more relevant 
compared to the long range correlations of the joint posterior distribution. Additionally, at a given 
point in the seismic grid, the rock physics model response of a facies can be assumed localised to a 
small region at and around the point, and the associated seismic convolutional response is limited to a 
wavelet length above and below the point thus ignoring wave propagation effects outside 
convolutional modelling of primary reflections. If the prior information is also limited to short range 
correlations only, the high dimensional inference problem can be split into a number of low 
dimensional problems, which can be approximately resolved by a weighted Monte Carlo method, see 
[Jullum et al. 2016] for details. Here is a conceptual outline: 
 

1. Sample a large number N of local region sized facies realisations from the prior pdf. 
2. Set up the local likelihood approximate function for each facies sample. 
3. At a given point, p, in the seismic grid, extract the observed seismic AVO data, dobs,p in 

a local region with p as center.  
4. For each facies sample, the local likelihood function with dobs,p as input is evaluated and 

provides a weight, vp. 
5. Normalise the weights, vp, yielding normalised weights, wp. 
6. For each facies sample, identify the center value, fp and pair it with wp. 

 
Steps 3 to 6 are iterated through all the observed seismic data. At a given point in the seismic grid, the 
sum of the normalised weights for a given facies value is an approximation to the marginal posterior 
distribution. The accuracy and the computational cost of the method depend on N and the size of the 
local region around the point, p. Using the estimated posterior marginal pdf and prior spatial 
information, if available, marginal posterior surface probabilities can readily be obtained.  
 
Example 
 
The following real data example illustrates the applicability of the outlined method and demonstrates 
the power of a probabilistic integration of information from different domains.  
 
The seismic AVO data originates from a 3D land seismic survey data covering a producing oil field in 
Australia’s Eromanga Basin. The field has produced more than 1 MMbbl from stacked Jurassic age 
reservoirs. The Birkhead Formation reservoir depositional model is described as a lacustrine and low 
energy fluvial environment, which manifests itself in sinuous stratigraphic traps. In most cases 
reservoir thickness is below seismic tuning and not easily mapped on NMO/stacked reflection seismic 
data.  A complicating factor is the presence of overlying, laterally varying amounts of calcite, which 
can distort the seismic response. Industry standard optimisation based seismic AVO inversion has 
been used as a tool to reduce the uncertainty with varying amounts of success. The outlined direct 
estimation of surface probabilities was applied to assess whether it could improve mapping of the 
complex reservoir model across the area. 
 
From regional wells, shale, brine sand, oil sand and calcite were identified as the primary facies 
belonging to a number of formations (Figure 1 left) resulting in 33 different facies defined in a 3D 
seismic volume. A priori probabilities for the surfaces of interest were defined from regional major 
interpreted surfaces and converted into prior facies probabilities assuming equal proportions of facies 
inside each formation. The a priori local spatial structure of the facies is assumed to be 1D and can be 
approximated by a vertical Markov process [Larsen et al. 2006] (Figure 1 top right).  The estimated 



 

 
80th EAGE Conference & Exhibition 2018 
11-14 June 2018, Copenhagen, Denmark 

transition probability matrix and the point-wise facies probabilities are the rules from which samples 
of the prior distribution are generated. 
 
Well log elastic data are used as input to a statistical rock physics model (Figure 1 bottom right). 
Wavelets specific for each of 9 partial stacks are estimated, and together with an Aki & Richards 
AVO model and an uncorrelated noise model, they define a Gaussian seismic likelihood.  
                               

 
Figure 1 Left: Stratigraphic column for the study area. The interval of interest is Early Cretaceous to 
Middle Jurassic. Top right: Logarithm to the probability of thicknesses larger than a given thickness. 
The linear trend indicates that thicknesses are exponentially distributed in line with a vertical Markov 
spatial model. Bottom right: Cross-plot of seismic scale acoustic impedance versus vp/vs ratio well 
log data color-coded with defined facies, shale (green), brine sand (yellow), oil sand (red), calcite 
cemented sand (blue). Brightness in colour increases with depth of formation. Separation of the 
different facies indicates that the facies may be resolved by seismic AVO data.  
 
Following the application of the method to the 9 partial stacks, the prior and posterior marginal facies 
probabilities are shown for a bin location near a well (Figure 2). The added information from the 
seismic AVO data is clear. A similar comparison for the defined surfaces interfaces is also shown. 
Note the consistency with the well formation tops. 
 
Conclusions 
 
Under reasonable assumptions, a high dimensional Bayesian inference problem involving seismic 
AVO data can be reduced to a number of local low dimensional inference problems. This enables an 
application of a general and flexible probabilistic framework for rigorous propagation of uncertainties 
as well as infusing prior knowledge from multiple domains for industry standard sized volumes. The 
applicability is tested on the local scale inference problem of estimating surfaces with uncertainties, 
here defined as transitions between subsets of facies. The example illustrates the methods ability to 
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provide robust surface estimates at and below seismic tuning due to the utilisation of statistical prior 
information. 
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Figure 2 Evaluation at a well location. From left to right: Petro-physical logs, facies log, prior and 
posterior marginal facies proportions at the well location, mini-sections of prior and posterior 
surface marginal probabilities along a mini section around a well location and compared with well 
petro-physical data. The probabilities are summed for 4 selected surfaces for display. Facies colour-
code is the same as in Figure 1 lower right. Note the resolution of the Top Namur, Top intra Namur 
shale and the Top Westbourne. Top Birkhead is only resolved to a limited degree. 


